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Abstract. Motivated by mirror symmetry of one-parameter models, an interesting
class of Fuchsian differential operators can be singled out, the so-called Calabi–Yau
operators, introduced by Almkvist and Zudilin in [7]. They conjecturally determine
Sp(4)-local systems that underly a Q-VHS with Hodge numbers

h30 = h21 = h12 = h03 = 1

and in the best cases they make their appearance as Picard–Fuchs operators of families
of Calabi–Yau threefolds with h12 = 1 and encode the numbers of rational curves on
a mirror manifold with h11 = 1. We review some of the striking properties of this
rich class of operators.

1. Calabi–Yau operators

The story of the quintic

The story of Calabi–Yau operators is connected to the beginnings of mirror symme-
try, in particular with the classical paper by Candelas, de la Ossa, Green and
Parkes [27], which is still an excellent introduction to the subject. The larger story
how mirror symmetry entered the mathematical community and has shaped a good
part of present day mathematics has been told in more detail at other places, and we
refer to [123, 149, 155] for nice surveys and [97, 151, 33, 91] for a more comprehensive
accounts of this ever growing subject. In this paper we can only give the barest outline
as far as relevant for our purpose.

Let us start with recalling the mysterious calculation with the power series

y0(t) =
∞∑
n=0

(5n)!

(n!)5
tn = 1 + 120t+ 113400t2 + . . . ∈ Z[[t]]

that appeared in [27]. It represents the unique (normalised) holomorphic solution to
the hypergeometric differential operator

P := Θ4 − 55t(Θ +
1

5
)(Θ +

2

5
)(Θ +

3

5
)(Θ +

4

5
) ∈ Q

[
t,
d

dt

]
,

where

Θ := t
d

dt
denotes the logarithmic derivative with respect to the parameter t. By expressing the
operator in a new coordinate q, we can bring P to a normal form

P = θ2 5

K(q)
θ2, θ := q

d

dq
,
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where K(q) is a power series in q. In fact, it is easy to see that this q-coordinate is
given by

q = ey1(t)/y0(t) = t+ 770t2 + . . . ,

where

y1(t) := log(t)y0(t) + f1(t), f1(t) ∈ tQ[[t]]

is the normalised solution of P that contains a single logarithm. It is easy to compute
the beginning of the power series expansion of K(q) and write it in the form of a
Lambert series

K(q) = 5 +
∞∑
d=1

nd
d3qd

1− qd

from which one can read off numbers nd, which a priori are in Q. One finds

n1 = 2875, n2 = 609250, n3 = 317206375, . . .

and computing the nd’s further, it appears that these numbers are all integers.

What makes the above calculation intriguing is the fact that it is related to the prop-
erties of two very different Calabi–Yau threefolds, but which the physics of strings
suggests to be closely related.

A-incarnation: The first manifold is the general quintic hypersurface X ⊂ P5, which
is a Calabi–Yau threefold with Hodge numbers h11 = 1 and h12 = 101. The numbers
nd are called instanton numbers and were argued in [27] to be equal to the number of
rational degree d curves on X counted in an appropriate way. This was a big claim,
as only the first two numbers were known at the time: the number 2875 of lines on
a general quintic was determined by the founding father of enumerative geometry H.
Schubert in 1886 [141], the number of 609250 of conics was determined by S. Katz
[96] hundred years later. In a heroic tour the force, the number of twisted cubics on the
quintic was determined by S. Strømme and G. Ellingsrud [53] and in fact served
as a crucial cross-check for the above calculation and resulted in the famous message:
Physics wins! For the details of that story we refer to [156].

B-incarnation: The second manifold is the quintic mirror Y with ’flipped’ Hodge
numbers h12 = 1, h11 = 101. It was constructed via an orbifold construction that was
proposed earlier by B. Greene and R. Plesser [71]. As the Hodge number h12(Y )
is equal to the dimension of the local moduli space of Y , we have in fact a 1-parameter
family of manifolds Yt, parametrised by t. It can be obtained from the quintics of the
so-called Dwork pencil

5∑
i=1

x5
i − 5ψ

5∏
i=1

xi = 0, t =
1

(5ψ)5

by dividing out the abelian group of order 125 generated by xi 7→ ζixi, ζ
5
i = 1,

∏5
i=1 ζi =

1 and resolving the resulting singularities. The solution to the differential equation
y0(t5) is in fact a (normalised) period integral of Yt and P is the associated Picard–
Fuchs equation. The most salient property of the differential operator is the fact that it
has a so-called MUM (=maximal unipotent monodromy) point at 0, where the variety
Yt degenerates to a union of divisors forming a combinatorial sphere.
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The computation of Candelas and coauthors was immediately extended to other
Calabi–Yau threefolds,[122, 58, 104, 105, 115]. The extension to smooth complete
intersections in weighted projective spaces yield 13 cases for which the associated dif-
ferential equation is of hypergeometric type, [16]. In fact, there is a 14th case [1, 47]
that was not considered at that time, as it corresponds to a Calabi–Yau variety with
a singular point.

In 1993 Victor Batyrev came up with a general interpretation of mirror symmetry
in terms of dual reflexive polytopes [13], which lead to a plethora of examples of mirror
pairs of Calabi–Yau manifolds, but usually with rather large Hodge numbers. As the
mirror manifold Y of X varies in a h11(X) = h12(Y )-dimensional family, the period
integrals are solutions to differential systems with this many variables. In general
only in the cases that h11(X) = h12(Y ) = 1, the so-called one-parameter models, one
obtains a single ordinary differential equation of order four annihilating the period
integrals. However, in [16] first examples of Calabi–Yau threefolds with h11(X) > 1
were considered, which, due to a symmetry, still lead to a fourth order operator. A
nice example is the case of the degree (3, 3) hypersurface X in P2 × P2, which leads to
the operator number 15 in the AESZ-list [3]

Θ4 − 3t(3Θ + 1)(3Θ + 2)(7Θ2 + 7Θ + 2)− 72t2(3Θ + 5)(3Θ + 4)(3Θ + 2)(3Θ + 1),

which no longer is of hypergeometric type. A curve on X has two degrees, coming from
the two P2-factors. The corresponding instanton numbers of the above operator count
the rational curves with total degree equal to d. The mirror manifold of X has h12 = 2,
but over a line in the two-dimensional deformation space the cohomology splits off a
sub Hodge structure with h03 = h12 = h21 = h30 = 1.

The discovery that the computation of periods of one manifold provides enumerative
information about another manifold was totally unexpected and left people wonder
about the geometrical relation between X and Y . It was a key motivation for the
development of mathematical understanding of mirror symmetry and led to several
important insights. First, Gromov–Witten theory was developed to provide a rigorous
basis for counting curves on general manifolds, [103]. This enabled Givental [64] and
Lian, Liu and Yau [113] to prove the mirror theorem that vindicated the above com-
putational scheme, but left out the question of the geometrical relation between the
spaces X and Y . Second, the idea that in mirror symmetry the symplectic geometry
of X gets identified with the holomorphic geometry of Y and vice versa got a precise
expression in terms of Kontsevich’s notion of homological mirror symmetry, [100].
The insight that this in turn leads to a description of X and Y as two dual torus
fibrations by Strominger–Yau–Zaslow [148] took some of the mystery of the mir-
ror symmetry phenomenon, but left the mathematical community with very difficult
problems to solve. The approach of M. Gross and B. Siebert seeks to develop this
picture of mirror duality in the framework of algebraic geometry out of dual logarithmic
degeneration data and the resulting affine manifolds with singularities, [72, 73], which
can be seen as a grand generalisation of Batyrev’s notion of dual reflexive polytopes.

Quantum Cohomology at the Mittag-Leffler Institute 1996–1997

In the year 1996/97 a special year on Enumerative Geometry and its Interaction with
Theoretical Physics was organised by Geir Ellingsrud, Dan Laskov, Anders Thorup and
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Stein Arild Strømme at the Mittag-Leffler Institute. The text [9] collects write-ups of
the talks that were given during the first semester and capture very well the excit-
ing atmosphere aroused by the new techniques of Gromov–Witten theory, Frobenius
manifolds, quantum cohomology, quantum D-modules, all aimed at understanding the
mirror theorem.

During my stay at Mittag-Leffler, I intended to steer away from toric mirror symmetry
and tried to obtain further examples of one-parameter models by looking at complete
intersections in other simple spaces, like homogeneous spaces. For example, complete
intersections in Grassmanianns lead to varieties with h11 = 1, but as these were not of
toric type, it was not so clear how to obtain a mirror dual, let alone its Picard–Fuchs
equation. This had changed after Dubrovin [49] and Givental [65] showed that it is
possible to find the Picard–Fuchs equation directly from X in terms of Gromov–Witten
invariants of an ambient manifold of X. More precisely, if X is a complete intersection
in a manifold Z that is simple enough to allow for an explicit description of its quantum
cohomology ring, one can use a Laplace transform to obtain the differential equation
for Y : the quantum Lefschetz principle in the formulation of [65, 66].

To explain these important ideas, consider for simplicity a smooth projective variety Z
with h2(Z) = 1, without odd cohomology and let H ∈ H2(Z) be its ample generator.
The homology class of a curve Σ in Z is determined by its degree, defined as the inter-
section number Σ ·H. For A,B,C ∈ H∗(Z) the Gromov–Witten three-point function
is the series

〈A,B,C〉 :=
∞∑
d=0

〈A,B,C〉dtd,

where
〈A,B,C〉d

is the Gromov–Witten count of rational degree d curves that meet the cycles (Poincaré
dual to) A,B and C. The quantum product ? is the t-dependent product determined
by the equation

(A ? B,C) = 〈A,B,C〉,
where on the left we use the non-degenerate Poincaré pairing on H∗(Z). The product
? is associative and commutative and in the Fano case can be used to define a new
ring structure on QH∗(Z) := H∗(Z)[t]: the quantum cohomology ring of Z. The
Dubrovin–Givental connection is the connection

∇ = td−H?
on the trivial bundle over the t-line and with the vector space H∗(Z) as fibre, whose
horizontal sections S(t) are solutions to the differential system

θS = H ? S, θ := t
d

dt
.

For Z = P4 the only non-trivial three-point invariant is

〈H4, H4, H〉1 = 1,

which expresses the obvious enumerative fact that there is a single line through two
points and this line intersects a given hyperplane in a single point. The quantum
cohomology ring is identified with C[H, t]/(H5 − t), i.e. one has

H ? H = H2, H2 ? H = H3, H3 ? H = H4, H4 ? H = t
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Using the basis 1, H,H2, H3, H4 for H∗(P4), the quantum differential system for S =∑
i SiH

i can be written as

t
d

dt


S0

S1

S2

S3

S4

 =


0 0 0 t
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·


S0

S1

S2

S3

S4

 ,

which leads to the differential equation of order 5 for the lowest component S4(t) of
S(t):

(θ5 − t)S4(t) = 0.

This equation is easily seen to have

ψ(t) :=
∑ 1

(n!)5
tn

as unique holomorphic solution. The Laplace transform of this function

1

t

∫ ∞
0

ψ(s5)e−s/tds

is the function

φ(t5) =
∞∑
n=0

(5n)!

(n!)5
t5n = y0(t5).

Note that the 5’s are dictated by the fact that the canonical class of P4 is K = −5H
and it transforms the irregular quantum differential system into one with regular sin-
gularities!

A closely related aspect was the idea, already present in [29], that the notion of mirror
symmetry should be extended from Calabi–Yau spaces to the ambient Fano manifolds
and that these mirrors were described by a Landau–Ginzburg potential, for example in
case of P4 by the Laurent polynomial

W = X1 +X2 +X3 +X4 +
1

X1X2X3X4

.

The solutions to the quantum differential system of P4 have a representation as oscilla-
tory integrals attached to W , which by Laplace transformation become period integrals
of the manifold

{1− tW = 0} ⊂ (C∗)4

that completes to a Calabi–Yau space by compactification in the toric manifold defined
by the Newton polytope of W . The upshot is the following: by expanding into a
geometric series, the normalised period

1

(2πi)4

∮
1

1− tW
dX1

X1

dX2

X2

dX3

X3

dX4

X4

expands as
∞∑
n=0

[W n]0t
n,
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where [−]0 takes the constant term of a Laurent polynomial. Indeed, for the above
Laurent polynomial for the mirror of P4 one obtains

[W 5n]0 =
(5n)!

(n!)5
,

which leads back to our function y0(t5). For a much more detailed analysis of this
example see [67, 77, 78].

Now for the Grassmannian Z = G(n, k) the quantum cohomology was determined by
Siebert–Tian, [143] and during the special year at Mittag-Leffler the idea arose to
use this to calculate the Laplace transform of the quantum differential system of the
Grassmannian and try to come up with predictions for the number of rational curves
on the Grassmannian Calabi–Yaus. This exciting collaboration with Batyrev, Kim
and Ciocan-Fontanine led to the papers [17] and [18].

As an example, consider the Grassmannian Z = G(2, 5); it is a six-dimensional Fano
variety with K = −5H. From the quantum cohomology differential system we obtained
in [17] the function

ψ(t) :=
∞∑
n=0

1

n!5
Ant

n,

where

An :=
n∑
k=0

(
n

k

)2(
n+ k

k

)
are the famous Apéry numbers related to ζ(2), [12]. The complete intersection X :=
X(1, 2, 2) ⊂ Z of Z with three general hypersurfaces of degree 1, 2, 2 in the Plücker
embedding of the Grassmannian is a Calabi–Yau threefold with h11 = 1. Using the
quantum Lefschetz principle/Laplace transform we were lead to the function

φ(t) =
∞∑
n=0

n!(2n)!(2n)!

(n!)5
Ant

n =
∞∑
n=0

(
2n

n

)2

Ant
n

that should be a normalised period of a mirror Y to X(1, 2, 2). The function φ is the
holomorphic solution to the operator

P = Θ4 − 4t(2Θ + 1)2(11Θ2 + 11Θ + 3)− 16t2(2Θ + 1)2(2Θ + 3)2

with Riemann symbol 
0 α β ∞
0 0 0 1/2
0 1 1 1/2
0 1 1 3/2
0 2 2 3/2

 ,

which is number 25 in the AESZ-list [3]. The instanton numbers of X(1, 2, 2) were
then found to be

n1 = 400, n2 = 5540, n3 = 164400, n4 = 7059880, . . .

Of particular interest is the case of the Calabi–Yau section X := X(1, 1, 1, 1, 1, 1, 1) ⊂
G(2, 7) obtained by taking 7 generic linear sections of the Grassmannian. We found
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that in this case the function ψ is given as

ψ(t) =
∞∑
n=0

Ant
n,

where

An =
∑
k,l

(
n

k

)2(
n

l

)2(
k + l

n

)(
2n− k
n

)
.

At the same time at Mittag-Leffler, Einar Rødland determined the mirror for the
generic Pfaffian Calabi–Yau in X ′ ⊂ P7 via the orbifold method [134]. When he showed
me the operator he had obtained, we were both electrified: it was identical with the
above G(2, 7)-operator that I had obtained a week before. But the instanton numbers
for X and X ′ had to be different! The mystery was partly resolved after realising that
the operator had two points of maximal unipotent monodromy. At the origin we get
the instanton numbers for for the Grassmannian Calabi–Yau X,

n1 = 196, n2 = 1225, n3 = 12740, n4 = 198058, n5 = 3716944, . . .

and for the point at infinity the instanton numbers for the Pfaffian Calabi–Yau X ′:

n1 = 588, n2 = 12103, n3 = 583884, n4 = 41359136, n5 = 360939409, . . .

At the time we were left to wonder about the geometrical relation between X ⊂ G(2, 7)
and the Pfaffian X ′ ⊂ P7. They are not birational, but it was shown later in [24] that
the derived categories of X and X ′ are equivalent, as predicted by homological mirror
symmetry.

Although these examples are not toric, it turns out that mirror symmetry for these
examples still can be linked up with Batyrev’s theory of dual reflexive polyhedra: the
Grassmanianns can be degenerated to a toric variety with singularities in codimension
3, [17]. This leads to a Laurent polynomial description for the Grassmannian that was
found before by Eguchi, Hori and Xiong, [52]. For a beautiful recent approach to
the mirror symmetry of the Grassmannian, its relation to the Langlands dual group
and the cluster structure, see [118] and [132].

It was suggested at the time that one could try to invert the degeneration construction
and start with special singular toric manifolds and smooth these to obtain further ex-
amples, see [14] and [8]. It has been verified that all Fano varities of dimension 2 and
3 admit such toric degenerations.

Calabi–Yau operators

In 2003 I received a letter from Gert Almkvist in which he asked if I knew more
operators like the one for the quintic. Apart from the cases coming from [16] and the
Grassmannian cases from [17], I knew a few more coming from the construction in [8],
but soon ran out of further examples. Then, by insightful playing with various sums of
binomial coefficients, Almkvist discovered many further examples. In the paper [7]
of Almkvist and Zudilin the notion of Calabi–Yau operator was formulated, which
is more or less characterised by the condition that the calculation of [27] works. The
operators were collected in a list [3]. For a slightly more systematic and updated list,
see [6] and the online database [28].
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Preliminary definition: An irreducible fourth order differential operator P ∈ C
[
t, d
dt

]
is called a Calabi–Yau operator if it satisfies the following conditions:

• it is of Fuchsian type.
• it is self-dual.
• it has 0 as MUM-point.
• it satisfies integrality conditions:

– the holomorphic solution y0(x) ∈ Z[[x]].
– the q-coordinate q(x) ∈ Z[[x]].
– the instanton numbers nd ∈ Z.

In fact, it is more natural to allow mild denominators and look for N -integral solution,
q-coordinate and instanton numbers. Also, one could replace Z by rings of integers in
a number field. There is a natural notion of Calabi–Yau operator of arbitrary order
that we will not spell out here. For a more thorough discussion we refer to the thesis
of Bogner [21] and [22]. Operators of order two tend to come from families of elliptic
curves, those of order three are obtained, by a famous theorem of Fano [57], from
those of order two by taking the second symmetric power and appear as Picard–Fuchs
operators for families of K3-surfaces with Picard number equal to 19. So operators of
order two and three belong to more classical realms of algebraic geometry and modular
forms. The case of fourth order operators seems to be the first that leads us into
completely unknown territory.
It follows from the self-duality condition of P that there is a unique formal coordinate
transformation x 7→ q = x+ . . . called the mirror map that brings the operator in the
form

θ2 1

K(q)
θ2,

where K(q) = 1 + . . . is a power series, called the normalised Yukawa coupling of P .
This power series is an invariant of the operator, unique up to a scaling in q. The
(normalised) instanton numbers

n1, n2, n3, . . . ∈ Q

of the operator P are defined by writing the Yukawa coupling in the form

K(q) = 1 +
∞∑
d=1

ndd
3 qd

1− qd
.

A general construction to obtain a self-dual fourth order operator is by taking the
symmetric cube of a second order operator. But these are very special as for these
operators all instanton numbers nd vanish for d > 1 and are thus counted as trivial.
(Although they play a role in mirror symmetry for abelian varieties, see [16] for an
example.) The conditions are not all independent of each other; for example the inte-
grality properties already imply the Fuchsian nature of the differential equation, [10].

There is a couple of obvious questions one can ask:

Question 1: How to construct examples of Calabi–Yau operators?

This question is partly but eloquently answered in the paper The art of finding Calabi–
Yau differential equations by G. Almkvist, see [2].
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We summarise here the basics. It is rather easy to fulfill the first three conditions, but
the integrality conditions are much harder to satisfy.

A-incarnations: As explained above, by looking at the quantum cohomology of a Fano
manifold Z one obtains a quantum differential system. If Z contains a Calabi–Yau
threefold (and the Picard number is one), one obtains a Calabi–Yau operator by Laplace
transformation. As we do not know the complete classification of Fano manifolds in
dimension ≥ 4 one can not go far beyond a class of obvious examples, obtained from
homogeneous bundles over homogeneous spaces. In fact, in [54] it was suggested that
by reverse engineering one could make predictions about the existence of manifolds
with given characteristic numbers from the monodromy of the operator alone.

B-incarnations: Here one is in much better shape. Take any interesting looking family
of Calabi–Yau threefolds with h12 = 1 and compute the Picard–Fuchs operator. The
chances are good that it will have a MUM-point somewhere. Below we describe two
classes of examples we have been looking at recently. This approach is far from ex-
hausted and there are many more constructions one can try. The recent algorithm of
Lairez [107] for finding Picard–Fuchs operators is most useful here.

Hadamard products: If f(t) =
∑

n ant
n and g(t) =

∑
bnt

n are power series, the series

f ? g(t) :=
∑

anbnt
n

obtained by taking the coefficentwise product is called the Hadamard product. A classi-
cal theorem of Hadamard states that if f and g satisfy a Fuchsian differential equation,
then so does f ? g. In this way quite a few Calabi–Yau operators were found. On the
level of local systems, this comes down to taking the (multiplicative) convolution of the
corresponding local systems. By the work of Katz, Dettweiler, Reiter, Sabbah
[98, 45, 46] the monodromy and Hodge numbers of such convolutions are under explicit
control. This answers completely a question posed at the end of [54].

Binomial Sums: In many examples the coefficients an of the holomorphic solution are
given as special binomial sums. Almkvist is the uncontested champion in guessing
binomial sums that give Calabi–Yau operators. Using Zeilberger in Maple allows
one to find the recursion and hence the Picard–Fuchs operator effectively.

Computer search: One can start with a parametric differential equation and make a
computer search for those which give rise to cases with integral solution, mirror map
and instanton numbers. This was done in [3] for operators of degree two. Going to
higher degree might be possible, but is hampered by the fact that the number of free
parameters becomes too big to handle by brute force.

Pullback from fifth order: A characteristic property of Calabi–Yau operators is the
vanishing of a certain quantity Q (see section 2.4), which causes the second order
Wronskians to satify a fifth order operator with MUM at the origin. The fourth and
fifth order operator determine each other; on the level of Lie algebras this is the excep-
tional isomorphism sp(4) ≈ so(5). One starts from fifth order operators and finds by
“pullback” the corresponding fourth order operator. A couple of Calabi–Yau operators
were found this way, but there seem to be very few simple fifth order operators that
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can be used.

The relation between fourth and fifth order operators was used with great success by
Almkvist and Guillera [4, 5] to find Ramanujan type formulas for 1

π2 , which is a
formula of type

∞∑
n=0

An(a+ bn+ cn2)zn0 =
1

π2.

The first were found by Guillera and five of them were proved by using the Wilf–
Zeilberger machinery. It was later realized that An was the coefficient of hyper-
geometric fifth order Calabi–Yau equation. Later, using the properties of the fourth
degree pullback, Almkvist and Guillera found several more formulas also for non-
hypergeometric equations. A striking example is the formula

∞∑
n=0

(6n)!

n!6
(36 + 504n+ 2128n2)

1

1000000n
=

375

π2

which in principle can be used to compute an arbitrary decimal of
1

π2
without com-

puting the earlier ones.

Laurent series: This is a special case of a B-incarnation. From a Laurent polynomial
W we can compute the constant term series

∞∑
n=0

[W n]0t
n

and from it one can in turn find the Picard–Fuchs operator that annihilates it. (In fact,
this was the method used in [16].) In good cases one obtains a fourth order operator
with MUM. In [15] Batyrev and Kreuzer produced a list of promising candidate
Laurent polynomials. Some new Calabi–Yau operators were found in this way.
The group of Corti, Coates, and Kasprzyk from Imperial College in London has
been persuing this approach on a larger scale, systematically using all reflexive poly-
topes and Laurent polynomials with special choice of the coefficients, [31]. From a
preliminary run [32], 19 new operators were found and one can reasonably expect
many more to come from this approach.

Diagonals: Not all Calabi–Yau operators arise from Laurent polynomials. One ob-
struction comes from the fact that the numbers

an = [W n]0

coming from a Laurent polynomial satisfy Dwork congruences, [137] and [121]. The
simplest of these imply that an satisfy for each prime number p the congruence

an0+n1p+...nkpk = an0an1 . . . ank
mod p.

A more general concept is that of a diagonal. If

f =
∑

ak1k2...knX
k1
1 X

k2
2 . . . Xkn

n ∈ Q[[X1, X2, . . . , Xn]]
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is a power series in n variables, then the diagonal ∆n(f) of f is the power series in one
variable obtained by only retaining the diagonal coefficients:

∆n(f) :=
∞∑
k=0

akk...kt
k ∈ Q[[t]].

As was shown by Christol [30], the diagonals of rational functions P/Q,Q(0) 6= 0
always satisfy a Fuchsian differential equation which is of geometric origin. More
generally, by Lipschitz [116] the diagonal of any D-finite (i.e. holonomic) series is
D-finite.
Note that if W is a Laurent polynomial in X1, X2, . . . , Xn, then its constant term series
is a diagonal of a rational function:

∑
n

[W n]0t
n = ∆n+1

(
1

1−X0X1 . . . XnW (X1, X2, . . . , Xn)

)
Any binomial sum can be converted into a representation as the diagonal of a rational
function [25], hence the corresponding differential operator is always of geometrical
origin in the sense of [10].

In these constructions integrality of the solution is put in by construction, but the inte-
grality of the mirror map and instanton numbers is for most operators conjectural and
an experimental fact only.

Question 2: How many Calabi–Yau operators do exist? Is their number finite or
infinite?

Of course, two operators that are related by a coordinate transformation or by multi-
plication with an algebraic function are to be considered as equivalent and we should
count classes. Clearly, this is related to the question if there are finitely many or infin-
itely many distinct topological types of Calabi–Yau threefolds, one of the big mysteries
of the subject. It is not clear what to expect nor what to hope for.

A Calabi–Yau operator can be written in Θ-form as

P := Θ4 + tP1(Θ) + t2P2(x) + . . .+ trPr(Θ),

where the Pk are polynomials of degree four in Θ and we assume Pr 6= 0. The number
r is then called the degree of the Calabi–Yau operator P . Over the last 12 years
Almkvist, myself and others have been busy with collecting, simplifying and sorting
operators by degree, which is the simplest measure of complexity. Our most recent list
(August 2016) contains the the following operators:

degree 1 2 3 4 5 6 7 8 9 10
number of cases 14 70 36 77 134 42 19 84 12 10

degree 11 12 13 14 15 16 17 18 19 20
number of cases 20 17 6 9 0 16 0 0 0 1

degree 21 22 23 24 . . . 32 . . . 40
number of cases 2 0 0 17 . . . 1 . . . 2



12 DUCO VAN STRATEN

Note that we are counting operators together with the choice of a MUM-point. Some
operators have more than one MUM-point, so these make, in transformed form, multi-
ple appearance on the list. All listed cases are really different, as the instanton numbers
are different. However, it is conceivable that some of the operators of high degree are
transformable to ones of lower degree, which would change the above table correspond-
ingly. The operators are collected in a database that is accessible online, [28].

Question 3: For which operators do exist Calabi–Yau incarnations?

One might ask: does there exist an A-incarnation for a given operator P? That is, does
there exist a Calabi–Yau threefold X with h11 = 1 for which the instanton numbers
are the instanton numbers of the operator?

nd(X) = nd(P)?

For this we have only few examples and there are many operators which the existence
of such a manifold is in serious doubt. For so-called conifold operators (see section 2.6)
one can compute characteristic numbers like the Euler number from the monodromy
of the operator, [54]. However, there are a number of cases where this number turns
out to be positive. See [44] for an example worked out in detail.
Does there exist a B-incarnation for P? That is, does there exist a Calabi–Yau three-
fold Y with h12 = 1 for which the Picard–Fuchs operator is P? If this happens, we
say that P has a strong B-incarnation (if Y is even projective we call it a very strong
B-incarnation). One could ask the operator to be a right factor of the Picard–Fuchs
of a Calabi–Yau variety with h12 > 1, which might be called a weak B-realisation.
Differential operators having an integral solution are G-operators in the sense of [10];
conjectures of Bombieri and Dwork say that such an operator is of geometric origin.
For the cases where the coefficients an have a representation as a binomial sum it is a
theorem that they are of geometric origin.

Even if for some operators there do not exist strict A- or B-incarnations, it seems
fruitful to consider each member of the list as describing something like a rank four
Calabi–Yau motive over P1 and try to reconstruct as much as possible of the geometry
out of the differential operator alone.

Some recent examples

We report on two classes of examples of Calabi–Yau threefolds with h12 = 1 that are
geometrically accessible and exhibit various interesting phenomena. These examples
will be discussed in two forthcoming papers with Cynk [37] and [38]. The computa-
tion of the corresponding Picard–Fuchs operators became possible using the program
of Lairez, [107].

Double octics. A double octic is a threefold Y that arises as the double cover of P3

ramified over a surface D ⊂ P3 of degree eight.
If D is smooth, Y is a smooth Calabi–Yau threefold with Hodge numbers h11 = 1,
h12 = 149. If D has singularities, Y is singular as well, but sometimes admits a crepant
resolution. Of particular interest is the case where D is the union of eight planes:
as long as there are no fivefold points or fourfold lines in the configuration of planes,
there exists a (projective) crepant resolution Ŷ that can be obtained as covering of
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the blow-up of P3. By [34], the infinitesimal deformations of Ŷ can be identified with
the equisingular deformations of the divisor D, which thus can be read of from the
combinatorics of the intersection pattern of the planes. In the thesis of Meyer [120],

63 families of such double octics with h12(Ŷ ) = 1 were identified. We determined for
all these cases the corresponding Picard–Fuchs operator and some new operators were
found this way. A particular beauty is the Calabi–Yau obtained from arrangement
number 254 of Meyer. The octic D is defined by the equation

xyzu(x+ y + z + u)(u+ y + tz)(zt+ tu+ x+ y)(x+ ty + zt) = 0,

where x, y, z, u are coordinates on P3 and t is the parameter. The Picard–Fuchs oper-
ator is a rather complicated operator of degree 12 with Riemann symbol

0 1/2 1 α β a b c ∞
0 0 0 0 0 0 0 0 3/2
0 1 0 1 1 1 1 1 3/2
0 1 0 1 1 3 3 3 3/2
0 2 0 2 2 4 4 4 3/2

 .

The operator has conifold points at 1/2, α, β, where α, β are roots of t2 − 3t + 1 = 0,
and apparent singularities (so the local monodromy is trivial here) at a, b, c, roots of
8t3 − 10t2 + t − 1 = 0. At 0, 1 and at ∞ (after a quadratic pullback) we have MUM
points, with three different sets of instanton numbers.

0 1 ∞
n1 288 128 4
n2 59200 −4796 7/2
n3 −8252768 341632 52
n4 −1223488576 −31623118 500
n5 585571467872 3395329408 2796

On the A-side we expect three birationally distinct Calabi–Yau geometries with these
(normalised) instanton numbers, which have equivalent derived categories!

In many other cases we obtain strong B-incarnations of operators that were known
before. Also, there are many so-called orphans (see also section 2.5) and there are
cases where the Picard–Fuchs operator is of order two. For details we refer to the
forthcoming [37].

It appears that there exist many operators in the list that have two points of maximal
unipotent monodromy. In a recent series of papers [88, 89, 90], Hosono and Takagi
described the beautiful geometry of the Reye congruence Calabi–Yau threefold X. The
symmetric complete intersection of five divisors of degree (1, 1) in P4×P4 was considered
in [16], but the Reye Calabi–Yau threefold X arises from this complete intersection by
dividing out the involution interchanging the P4-factors and has h11 = 1, h21 = 26. The
corresponding Picard–Fuchs operator for the mirror family was described in [16] and
appeared as number 22 in the AESZ-list [3]:

72θ4−
7x
(
155θ4 + 286θ3 + 234θ2 + 91θ + 14

)
−

x2
(
16105θ4 + 68044θ3 + 102261θ2 + 66094θ + 15736

)
+

23x3
(
2625θ4 + 8589θ3 + 9071θ2 + 3759θ + 476

)
−
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24x4
(
465θ4 + 1266θ3 + 1439θ2 + 806θ + 184

)
+

29x5
(
(θ + 1)4

)
It has a second MUM-point at infinity, whose mirror appears to be the double quintic
symmetroid X ′, a double cover of the general linear symmetric determinant in P4. So
this is a second example quite similar to that of the Pfaffian and the Grassmannian
Calabi–Yau and indeed in [90] X and X ′ were shown to be derived equivalent.

Elliptic fibre products. By blowing up the nine intersection points of a pencil of
plane cubics we obtain a rational elliptic surface E . By construction it admits a map
π : E −→ P1 and the fibres are identified with the cubics of the pencil; from the
Euler number χ(E) = 3 + 9 we see that in general there will be 12 nodal cubics in the
family. As all cubics through eight of the base points also pass through the nineth, and
four of the eight points can be fixed, we see that the construction depends on eight
parameters, and thus that there is one condition on the position of the 12 singular fibres
of a rational elliptic surface. By specialisation of the construction, the singularities of
these fibres may coalesce to form other Kodaira types, but the sum of their Euler
numbers will always add up to 12. There are lists by Schmickler-Hirzebruch [140]
and by Herfurtner [80] that give all possible combinations of three and four Kodaira
fibres; among them there are the six Beauville surfaces [19] with four fibres of type In.
In 1988 Schoen [138] decribed a simple and very interesting class of Calabi–Yau
threefolds by taking the fibre product of two such rational elliptic surfaces Ei, i = 1, 2:

Y := E1 ×P1 E2 −→ P1.

If the sets of singular values Σi ⊂ P1 of Ei are disjoint, then Y is a smooth Calabi–Yau
threefold that depends on 19 = 11 + 11 − 3 parameters. The Euler number is equal
to zero, as the fibres over a point of P1 all have Euler number zero, and indeed the
Hodge numbers of Y are (h11, h12) = (19, 19). If, however, the fibrations Ei −→ P1

have singular points in common, the threefold Y aquires singularities. For example,
when an In fibre meets an Im fibre, Y aquires n · m singularities of type A1. When
we take a small resolution Ŷ of these singularities, we obtain a smooth Calabi–Yau
threefold whose Hodge numbers can be determined easily from the singular fibres. In
particular, there is a large number of cases where h12(Ŷ ) = 1, involving elliptic surfaces
with up to six singular fibres. In [35] we started exploring these examples, but it was
only after Lairez’s program [107] became available that we were able to determine
the most complicated of the corresponding Picard–Fuchs operators.

Example: We take for E1 the Beauville surface with fibres I6, I3, I2, I1 and as E2 a surface
with five singular fibres I8, I1, I1, I1, I1 that depends on a single modulus-parameter t
(the Weierstrass equation for this surface is too complicated to write down here). We
identify the bases of the fibrations of E1 and E2 in such a way that three of the fibres
of these two families appear over the same point of P1 in the following way:

0 1 ∞
E1 I6 I3 I2 I1 − −
E2 I8 I1 I1 − I1 I1

For generic choice of the modulus parameter t, the three “free” I1 fibres will be disjoint
and we obtain a Calabi–Yau threefold with 8 · 6 + 3 · 1 + 2 · 1 = 53 A1-singularities.
A small resolution of these is a (non-projective) Calabi–Yau threefold Ŷ with Euler
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characteristic 2 · 53 = 106, so the Hodge numbers are (h11(Ŷ ), h12(Ŷ )) = (52, 1). If the
modulus-parameter t is varied, the free I1-fibres move, and for certain values further
collisions of fibres do occur, leading to varieties with other types of singularities. The
Picard–Fuchs operator obtained is the most complex one encountered up to now. It
made up number 500 in the list and was presented to Almkvist on occasion of his 34

birthday, [36]. Currently, we are exploring the properties of the operators that can be
obtained from this rich class of examples, [38].

2. Some background

In the second part of this paper we explain in some more detail certain of the concepts
that were freely used in the first part.

2.1. Differential equations of Fuchsian type. We first briefly go over the basic
properties of linear differential operators on the Riemann sphere P1 = C∪{∞} relevant
for our discussion. We refer to Gray [69] for an overview of the historical develop-
ment of this very rich subject. The classical book of Ince [92] contains a treasure of
information and is still worth reading.
The set of singularities Σ ⊂ P1 of a differential operator

P := an(t)
dn

dtn
+ an−1(t)

dn−1

dtn−1
. . .+ a0(t) ∈ C[t,

d

dt
]

are the zeros of an(t) together, possibly, with the point∞. In a neighbourhood of each
point p 6∈ Σ one find a basis of holomorphic solutions to the differential equation. A sin-
gular point p ∈ Σ is said to be regular singular if all solutions grow, at radial approach,
at most as a power of the inverse distance to p. Fuchs [70] found a simple condition
for this to happen: 0 is a regular singular point of P if and only if ord0(ai/an) ≤ n− i.
Differential equations with only regular singular points are called regular singular or of
Fuchsian type. The solutions to such equations have an expansion of the form∑

aα,kt
α logk(t)

that is convergent on a slit disc around each singular point. The Riemann symbol of
an operator summarises the information about the local behaviour of the solutions
near the singular points of a differential operator. It consists of a table with columns
indexed by the singular points under which the corresponding exponents are written.
These exponents determine the local behaviour of the solutions at a singular point and
can be determined as follows. If the operator P is written in Θ = t d

dt
-form

P := P0(Θ) + tP1(Θ) + t2P2(Θ) + . . .+ tdPd(Θ),

then the exponents of P at 0 are just roots of the polynomial P0(Θ). The exponents
of P at an arbitrary point p are obtained by first translating the point p to the origin
0 and writing the transformed operator in Θ-form and reading off the new P0. The
exponents of P at p = ∞ are obtained using the reciprocal transformation t 7→ 1/t.
When P is given in Θ-form, this is very easy operation, as it amounts to reversing the
sequence of polynomials P0, P1, . . . , Pd and replacing Θ by −Θ, so that the exponents
of P at infinity are given by the negatives of the roots of the polynomial Pd.
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2.2. Picard–Fuchs equations. The differential equations that arise in algebraic ge-
ometry are usually those that are satisfied by integrals of rational or algebraic functions
that depend on parameters and are called Picard–Fuchs equations. It was realised early
on that such differential equations do have regular singularities. According to Houzel
[84], probably the first example was the equation found by Euler [55], that describes
the circumference of an ellipse with semi-axes of length 1 and

√
1− t2 as function of

its eccentricity t:

I(t) := 4

∫ 1

0

√
1− t2x2

1− x2
dx = 2π

(
1−

(1

2

)2

t2 −
(1 · 3

2 · 4

)2 t4

3
−
(1 · 3 · 5

2 · 4 · 6

)2 t6

5
− . . .

)
,

which became later know as a complete elliptic integral of the second kind. From the
series expansion the differential equation satisfied by I(t) is easily found to be

P = Θ2 − t2(Θ− 1)(Θ + 1)

which has  0 1 −1 ∞
0 0 0 −1
0 1 1 1


as Riemann symbol. Another early example is the period of the mathematical pendu-
lum (L = g = 1) with initial angle φ as function of t := sin(φ/2):

4

∫ 1

0

1√
(1− x2)(1− t2x2)

dx = 2π
(

1 +
(1

2

)2

t2 +
(1 · 3

2 · 4

)2

t4 +
(1 · 3 · 5

2 · 4 · 6

)2

t6 + . . .
)
,

which is an elliptic integral of the first kind and satisfies the Legendre differential
equation

Θ2 − t2(Θ + 1)2

with Riemann symbol  0 1 −1 ∞
0 0 0 1
0 0 0 1

 .

After initial work by Poincaré and Picard [127], it was with the work of Dwork [50]
and Griffiths [74], [75] that integrals on higher dimensional manifolds were studied
systematically and methods to determine the Picard–Fuchs equation were developed.
The general geometric setting is most conveniently formulated as follows. One starts
with a projective family

f : Y −→ P1

and let Σ ⊂ P1 be the set of critical values of f , so that f is a smooth map when
restricted to P1 \ Σ. For t ∈ P1 \ Σ the fibre Yt := f−1(t) is a smooth d-dimensional
variety; for t ∈ Σ the fibre Yt will aquire a singularity. Now choose for p ∈ P1 \
Σ a d-cycle γp ∈ Hd(Yp). Using the local topological triviality of f over P1 \ Σ,
we can transport γp to neighbouring fibres and obtain cycles γt ∈ Hd(Yt) for t in a
neighbourhood of p. If we choose a relative differential d-form

ω ∈ Γ(Y ,Ωd
Y/P1)

one can form the period integral

φ(t) =

∫
γt

ω|Yt ,
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which initially is defined in a neighbourhood of p, but which can, using the local
topological triviality of f , be extended along arbitrary paths in P1 \ Σ. The finite
dimensionality of the cohomology space Hd

dR(Yt) implies that φ satisfies a linear dif-
ferential equation, called the Picard–Fuchs equation. If the family f : Y −→ P1 is
given in terms of polynomial equations it is in principle always possible to find this
Picard–Fuchs equation, but it might not be simple to do so in practice. For recent
computer implementations see [124] and [107].

2.3. Local systems and monodromy. If P is a differential operator of order n with
set of singularities Σ, then the set of solutions to Pφ = 0 form, in the neighborhood
of each regular point p, a C-vector space Lp of dimension equal to n: at p a solution
is uniquely determined by the values of the first n− 1 derivatives. Hence, we obtain a
local system of solutions L := Sol(P) on P1 \ Σ. If we choose a base point p ∈ P1 \ Σ,
the local system determines and is determined by a representation of the fundamental
group

T : π1(P1 \ Σ, p) −→ Aut(Lp) ' Gln(C), γ 7→ Tγ

called the monodromy representation of P , which describes the behavour of solutions
of P under analytic continuation along closed paths. The image of the fundamental
group under T is called the monodromy group of P . A choice of generators γ1, γ2, . . . , γr
of π1(P1 \ Σ, p) results in a r-tuple of matrices Ti := Tγi

(T1, T2, T3, . . . , Tr) ∈ GLn(C)r

that completely describes the local system. A change of base in Lp leads to a simulta-
neous conjugation of all Ti. These powerful ideas were introduced by Riemann [131] in
his study of the classical hypergeometric function F (α, β, γ; t). In fact he determined
the monodromy representation for the classical hypergeometric differential operator
and showed that it characterised the equation. In his thesis, Levelt [111] found the
monodromy representation of the higher hypergeometric functions. In fact, in this case
the representation is uniquely determined by the Jordan type of the local monodromies
around the singular points and thus represent the simplest examples of what is now
called a rigid local system, [98].

If the operator P is Fuchsian, the Zariski closure of the monodromy group is equal to
the differential Galois group Gal(P) that is introduced in the theory of Picard and
Vessiot in analogy with the Galois group of an algebraic equation. We refer to the
book [130] for a detailed account.

In his famous 1900 ICM adress held in Paris, Hilbert asked in his 21. problem for
the existence of a Fuchsian differential operator with prescribed monodromy represen-
tation. This is the so-called Riemann–Hilbert problem and is of central importance
in contemporary mathematics; its solution is an interesting chapter in the history of
mathematics, [128, 129, 20, 11, 39].

In the case of Picard–Fuchs operators, one starts with a projective family

f : Y −→ P1,

smooth over P1 \ Σ and considers the direct image sheaf

Rdf∗CY .
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It restricts to a local system H on P1 \ Σ and one has

Ht = Hd(Yt,C).

In fact, the local system H has many further special properties. For instance, we can
consider the restriction HZ of Rdf∗ZY to P1 \ Σ and we have

HZ ⊗ C = H

so HZ produces a lattice bundle inside H and so the monodromy representation lands
in GLn(Z). The behaviour of cycles under parallel transport was studied by Picard
[127] and Lefschetz [110] and these works represent the first topological studies of
higher dimensional algebraic varieties. It led to the Picard–Lefschetz formula

Tγ : Hd(Yp) −→ Hd(Yp), v 7→ v ± 〈v, δ〉δ

describing the cohomological monodromy that a cycle v undergoes under parallel trans-
port along a path γ that circumscribes (in the positive direction) a singular fibre that
aquires a node (A1-singularity) (see also [108], [117]); δ is the vanishing cycle: the class
of a sphere that gets contracted when passing to the singular fibre. In general, all
sorts of singularities might appear in the fibres. It is a fundamental fact that the local
monodromy transformation around any singular point s

Ts : Hd(Yt) −→ Hd(Yt)

is always quasi-unipotent: there exist m, k such that

(Tms − I)k = 1.

(In fact, one can take k = d+ 1.) This is called the monodromy theorem and was first
proven in [109]. As a consequence, the exponents of Picard–Fuchs operators are always
rational.

2.4. Self-duality. The local systems H coming from geometry also have a build-in
self-duality that reflects Poincaré duality in the fibres: intersection of cycles in the
fibres Yt defines a non-degenerate pairing

Ht ×Ht −→ C.

This leads to a self-duality property of the local system H and of the corresponding
Picard–Fuchs operators P .
Recall that the adjoint P∗ of a differential operator is obtained by reading the operator
backwards with alternating signs: if

P =
n∑
i=0

ai(t)
di

dti
∈ Q(t)

[
d

dt

]
then

P∗ =
n∑
i=0

(− d

dt
)iai(t) ∈ Q(t)

[
d

dt

]
.

This notion was introduced by Frobenius in [60].
We say that an operator P is essentially self-adjoint if there exists a function α 6= 0
such that

Pα = αP∗.
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If such α exists, it is easy to see that it has to satisfy the differential equation

α′ = − 2

n
a1α.

So if the residues of a1 are rational, α will be an algebraic function and the local
system of solutions to an essentially self-adjoint operator has a non-degenerate pairing
with values in a rank one local system defined by α. It is symmetric if n is odd and
alternating if n is even.
Only in the case that α is a rational function, we get an honest pairing and the differ-
ential Galois group Gal(P) is contained in Sp(n) (n even) or SO(n) (n odd).

For a fourth order differential operator

P :=
d4

dt4
+ a3(t)

d3

dt3
+ a2(t)

d2

dt2
+ a1(t)

d

dt
+ a0(t) ∈ Q(t)

[
d

dt

]
the quantity

Q :=
1

2
a2a3 − a1 −

1

8
a3

3 + a′2 −
3

4
a3(a3)′ − 1

2
a′′3

was introduced in [7] and taken as part of the definition of the notion Calabi–Yau
operator. It was shown in [7] that the vanishing of Q is equivalent to the fact that the
second order Wronskians of P satisfy an equation of order five rather than six and this
is equivalent to P being essentially self-adjoint in the above sense. As a consequence,
the condition Q = 0 does not always lead to operators with Gal(P) ⊂ Sp(4), but only
so after going to a cover defined by the algebraic function α (which, in fact, is the
unnormalised Yukawa coupling expressed in the original coordinate). An example is
the operator number 245 from the AESZ-list [3]

P = Θ4 − t(216Θ4 + 396Θ3 + 366Θ2 + 168Θ + 30) + 36t2(3Θ + 2)2(6Θ + 7)2

with instanton numbers

n1 = −6, n2 = −33, n3 = −170, n4 = −1029, n5 = −3246

for which α is

α(t) =
1

t3(1− 108t)11/6
.

So only after going to a sixfold cover we do obtain an Sp(4)-operator. We note that α
is a rational function if and only if the exponents at all singular points add up to an
even integer, see e.g.[22]

2.5. MUM and Hodge theory. We say the operator P has a MUM point at 0, if
written in Θ-form we have

P = Θ4 + tP1(Θ) + . . .

In this case, the vector space H0 of solutions on an (arbitrary small) slit disc around
the origin has a very special basis of solutions, called the Frobenius basis

y0(t) = f0(t)
y1(t) = log(t)y0(t) + f1(t)
y2(t) = 1

2
log(t)2y0(t) + log(t)y1(t) + f2(t)

y3(t) = 1
6

log(t)3y0(t) + 1
2

log(t)2y1(t) + log(t)y0(t) + f3(t),
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where the fi are convergent power series with f0(0) = 1, fi(0) = 0, i = 1, 2, 3. We will
also use the scaled Frobenius basis

u3−k := yk/(2πi)
k, k = 0, 1, 2, 3

The local monodromy around 0 on the four dimensional vector space

H0 = 〈u0, u1, u2, u3〉

with respect to this scaled Frobenius basis is given by the matrix

T0 :=


1 0 0 0
1 1 0 0

1/2 1 1 0
1/6 1/2 1 1

 ,

which is unipotent with a Jordan block of maximal possible size, hence maximal unipo-
tent monodromy, that is for short, MUM.
The local systems H on P1\Σ that arise from algebraic geometry have strong additional
properties: the cohomology of the fibre Hd(Yt) carries a pure Hodge structure of weight
d: for each t we have a Hodge decomposition

Hd(Yt) =
∑
p+q=d

Hp,q
t , Hp,q

t = Hq(Yt,Ω
p)

that in fact depends nicely on t: the spaces of the Hodge filtration

F k
t =

∑
p≥k

Hp,q
t

form holomorphic vector bundles on P1 \ Σ

Fd ⊂ Fd−1 ⊂ . . . ⊂ F0 = H⊗OP1\Σ.

One says that the local system H on P1 \ Σ underlies a variation of Hodge structures
(VHS). It is a fundamental fact proven by Schmidt [139] that one may extend this
structure defined on P1\Σ over the punctures s ∈ Σ to a mixed Hodge structure (MHS):
for each s ∈ Σ there is a Q-vector space Hs = Hd

lim(Ys) of dimension equal to the rank
of the local system H. It can be defined as the sections of the Q-local system over an
arbitrary small slit disc centered at s. Write the local monodromy as Ts = UsSs, where
Us is unipotent and Ss is semi-simple, and define the monodromy logarithm as

Ns = − logUs = (1− Us) +
1

2
(1− Us)2 +

1

3
(1− Us)3 + . . .

The nilpotent endomorphism Ns defines a weight filtration

W0 ⊂ W1 ⊂ . . . ⊂ W 2d = Hs,

which is characterised by the property that

Nk
s : GrWd+k

'−→ GrWd−k.

One can use the Hodge filtration F• to define a limit Hodge filtration F •s on Hs and
the fundamental theorem is that for each s ∈ Σ the triple (Hs,Ws,•, F

•
s ) is a mixed

Hodge structure: the filtration F •s defines a pure Hodge structure of weight k on the
graded pieces GrWk Hs.
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In the geometrical case Steenbrink [146] has constructed this mixed Hodge structure
on Hs using a semi-stable model

D ↪→ Z
↓ ↓
{s} ↪→ ∆

over a disc ∆. Here D is a (reduced) normal crossing divisor with components Di. The
complex of relative logarithmic differential forms

Ω•Z/∆(logD)

can be used to describe the cohomology of the fibres and its extension to ∆. The
complex comes with two filtrations F •, W•, which induces filtrations on the hyperco-
homology groups

Hd(Ω•Z/∆(logD)⊗OD),

which then leads to the limiting mixed Hodge structure on Hs. We refer to [126] for
a detailed account. Of particular relevance is the resulting weight spectral sequence,
which expresses the graded pieces GrWk Hs in terms of the intersection pattern of the
exceptional divisors and which degenerates at E2. The E1-term is given by

Ep,q
1 :=

∑
kH

q+2(p−k)(D[2p− k])

= Hq+2p(D[2p])⊕Hq+2p−2(D[2p− 1])⊕ . . . ,
where

D[k] :=
∐

Di0 ∩Di1 ∩ . . . Dik

and where the sum runs over all indices i0 < i1 < . . . < ik. In the diagram below, the
stars indicate possible non-zero entries in the E1-page of the weight spectral sequence
of a degeneration of a threefold.

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

The differential runs horizontally, the operator N acts on it and goes two steps to the
right and two steps down. There is a reflection symmetry around the central point.

The bottom row Ep,0
1 can be identified with the complex

0 −→ H0(D[0]) −→ H0(D[1]) −→ H0(D[2]) −→ . . . −→ H0(D[d]) −→ 0

where the differential is induced by the inclusion maps. The dual intersection complex
Γ has 0-cells in bijection to the irreducible components of D, 1-cells in bijection to the
intersections of divisors, etc. So we see that the bottom row complex computes the
cohomology of the dual intersection complex. Hence

GrW0 H
k
lim(Y0) = Hk(Γ).

There are four possibilities for the mixed Hodge diamond of the limiting mixed Hodge
structures appearing for variations of Hodge structures with h30 = h21 = h12 = h03 = 1.
In the diagrams below the k-th row from the bottom gives the Hodge numbers of GrWk ;
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the operator N acts in the vertical direction shifting downwards by two rows. The
diagram is symmetric around the central vertical axis (by complex conjugation) and
the central horizontal action (by symmetry of the weight filtration). The numbers
in each slope = 1 (so SW-NE-direction) row of the diagram have to add up to the
corresponding Hodge number, so are all equal to 1 in our case. The cases that arise
are:
F-point

0
0 0

0 0 0
1 1 1 1

0 0 0
0 0

0

In this case N = 0, so this happens if and only if the monodromy is of finite order.
The limiting mixed Hodge structure is in fact pure of weight three. This happens in
the mirror quintic at ∞, where the monodromy is of order five.

C-point
0

0 0
0 1 0

1 0 0 1
0 1 0

0 0
0

In this case N 6= 0, N2 = 0 and there is a single Jordan block. The pure part GrW3
is a rigid Hodge structure with Hodge numbers 1, 0, 0, 1. Furthermore, GrW4 and GrW2
are one-dimensional and are identified via N . This type appears when a Calabi–Yau
threefold aquires one or more ordinary double points, nowadays often called conifold
points, which explains our name C-type point for it. In the mirror quintic this happens
at t = 1/55. But there are many different kinds of singularties that lead to this mixed
Hodge diamond.

K-type point

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

In this case we also have N 6= 0, N2 = 0 but there are two Jordan blocks. In this
case the pure part GrW3 = 0 and GrW4 , GrW2 are Hodge structures with Hodge numbers
1, 0, 1, which are identified via N . The Hodge structure looks like that of the transcen-
dental part of a K3-surface with maximal Picard number, which explains our name
K-point for it. This type of degeneration does not appear in the family of the quintic
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mirror, but is common in other examples. The holomorphic three-form is destroyed by
the singularties appearing in the fibre.

MUM-point
1

0 0
0 1 0

0 0 0 0
0 1 0

0 0
1

Here N3 6= 0 and there is a single Jordan block of maximal size. The Hodge structures
GrW2k (k = 0, 1, 2, 3) are one-dimensional and necessarily of Tate type. This happens
for the quintic mirror at t = 0 and is one of the main defining properties of Calabi–Yau
operators.
So at a MUM-point, the resulting mixed Hodge structure is an iterated extension of
Tate–Hodge structures. Deligne [41] has shown that the instanton numbers n1, n2, n3, . . .
can be seen to encode precisely certain extension data attached to the variation of Hodge
structures near the MUM-point.

Now it is very well possible that in a family of Calabi–Yau threefolds no MUM-points
appear. In [133] first examples were given and in [63] a further example was described,
but the corresponding Picard–Fuchs equation was of second order. In [35] an exam-
ple with differential Galois group Sp(4) was given and, in fact, there are many more.
Zudilin [157] proposed to call such operators orphans, as they do not have a MUM.
For Calabi–Yau threefolds appearing in one-parameter families without a MUM-point,
it is not clear how to approach the problem of constructing a mirror manifold, nor
how to extract enumerative information of the mirror manifold using the Picard–Fuchs
equation. For this, one will need to understand the information hidden in the extension
data near C-type and K-type points.

2.6. Integrality properties. So far most of the properties of the differential operator
we discussed were purely algebraic and rather easy to arrange for. For Calabi–Yau
operators one supplements these by further arithmetic integrality conditions. Initially
in [7] it was required that the operator has an integral solution, but it is more natural
to allow small denominators and ask for N -integral solutions.
We will now explain in some detail the reasons for the integrality of the normalised
period near a MUM-point in the case it arises as Picard–Fuchs operator of a family of
Calabi–Yau varieties defined over Q. It can be seen as a generalisation of the celebrated
Theorem of Eisenstein. In the year 1852 Eisenstein [51] reported at the meeting of
the Königlich Preußische Akademie der Wissenschaften zu Berlin on a curious general
property of the power series development of algebraic functions: if the power series

φ(t) = a0 + a1t+ a2t
2 + . . . ∈ Q[[t]].

solves an equation 0 = R(t, φ(t)) where R ∈ Z[x, y], then only finitely many primes
appear in the denominators of the coefficients ai:

φ(t) ∈ Z[
1

N
][[t]]
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He mentions the example
√

1 + t, where the replacement of t by 4t turns the series
into one with integral coefficients, a fact he considers as well-known. On the other
hand, in the series expansion of log(1 + t) and et any prime appears in a denominator
of a coefficient, and the theorem of Eisenstein implies the well-known fact that these
series are not algebraic.

As usual, there is a prehistory that goes back to Euler. In a letter to Goldbach,
Euler [56] reported on the counting of the number An of ways to decompose an n-gon
into triangles by drawing diagonals and found

n 3 4 5 6 7 8 9 10
An 1 2 5 14 42 132 429 1430

and gave
1− 2a−

√
1− 4a

2aa
as the generating function for this sequence of numbers that nowadays are called the
Catalan-numbers. In his reply, Goldbach expressed his delight in the fact that this
square root function apparently has integral coefficients for its expansion. In the next
letter, Euler remarks that more generally the expansion of

n
√

1− n2a

in powers of a has only integers as coefficients.

Eisenstein did not write down a formal proof of his discovery, but indicated that once
the truth of the statement was recognised, it was easy to show its truth by the method
of undetermined coefficients. What did he have in mind?

It was Heine [79] who gave a proof of a sharpened version of Eisenstein’s claim.
Heine also remarked that the series

1 +
1

3
t+

1

32
t2 +

1

39
t3 +

1

316
t4 + . . .

was not excluded by the theorem of Eisenstein, but nevertheless was not algebraic.

Definition: A series φ(t) ∈ Q[[t]] is called N-integral if there exist c,N ∈ N such that

cφ(Nt) ∈ Z[[t]].

Heine proved the following statement:

Theorem of Eisenstein: Algebraic series are N-integral.

Another proof was given by Hermite [81] and there is a very nice proof of the result
using the theory of diagonals that we explain now.

Recall that the diagonal of

f =
∑

ak1k2...knx
k1
1 x

k2
2 . . . xknn ∈ Q[[x1, x2, . . . , xn]]

is the power series

∆n(f) :=
∞∑
k=0

akk...kt
k ∈ Q[[t]].
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In this way we obtain a Q-linear diagonalisation map

∆n : Q[[x1, x2 . . . , xn]] −→ Q[[t]], f 7→ ∆n(f)

We can consider the set of rational functions Rn

P (x1, x2, . . . , xn)

Q(x1, x2, . . . , xn)
, P,Q ∈ Q[x1, x2, . . . , xn]

(with Q(0) 6= 0) that admit a power series expansion and we say that a power series is
an n-diagonal, if it is the diagonal of such a rational function in n variables, that is, if
it belongs to

∆n(Rn) ⊂ Q[[t]] .

There is an obvious notion of N -integrality for series in many variables. Rational func-
tions (with rational coefficients) in many variables are obviously N -integral: if we take
P and Q with integral coefficients, then we can take the denominator of P (0)/Q(0) as
N . As diagonals of N -integral series are clearly N -integral, we see that all n-diagonals
are in fact N -integral for some N .

Theorem: (Fürstenberg [59])1 The 2-diagonals of rational functions are precisely the
algebraic series.
This theorem thus provides a natural proof of Eisensteins theorem. Let us indicate the
proof. If F (x, y) ∈ R2, then one can write

φ(t) := ∆2(F ) =
1

2πi

∫
γ

F (ζ,
t

ζ
)
dζ

ζ
.

The cycle γ encloses some the poles of F on the Riemann-surface given by xy = t, so
evaluating the integral by residues shows that φ(t) indeed is an algebraic function.
Conversely, if a series φ(t) solves R(t, φ(t)) = 0, where R(x, y) ∈ Z[x, y], R(0, 0) = 0,
∂yR(0, 0) 6= 0, then it is a nice exercise to show that

φ(t) = ∆2(F (x, y)),

where

F (x, y) = y2∂yR(xy, y)

R(xy, y)
.

There is a generalisation of this result to more variables:

Theorem: (Denef and Lipschitz [43]) The diagonal of algebraic power series in n vari-
ables is the diagonal of a rational function in 2n variables.

From the proof of Eisenstein’s theorem we see that the diagonalisation map has a
natural interpretation in terms of residues and integration over a vanishing cycle as was

1The main interest of the paper [59] lies, however, in the statement that the situation is completely
different over finite fields: many more power series are algebraic, like

φ(t) =

∞∑
n=0

tp
n

,

which satisfies the equation

φ(t) = t+ φ(t)p,

hence is an algebraic series. If K is a finite field, then all n-diagonals are algebraic.
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pointed out in [40]. Let us consider the following model situation: X := Cn, S = C
and the map

p : X −→ S, (x1, x2, . . . , xn) 7→ x1x2 . . . xn = t .

The fibre Xt := p−1(t), t 6= 0 is isomorphic to (C∗)n−1 and contains the (n − 1)-cycle
Γt defined by:

|x1| = t1, |x2| = t2, . . . , |xn| = tn ⊂ Xt

where t1, t2, . . . , tn are positive real numbers such that t1t2 . . . tn = |t|. There is a map

Ωn
X −→ ωX/S; ω 7→ Res

( ω

x1x2 . . . xn − t

)
.

Now the statement is

1

(2πi)n

∫
Γt

Res
(hdx1dx2 . . . dxn
x1x2 . . . xn − t

)
= ∆n(h).

We will now describe a general theorem that implies the N -integrality of the invariant
period for one-parameter families of Calabi–Yau manifolds near a MUM-point. The
theorem has its roots in the work of Christol, in particular in the following example
that can be found in [30].

The power series

F (1/2, 1/2, 1; t) = 1 +
(1

2

)2

t+
(1 · 3

2 · 4

)2

t2 + . . .

is the normalised period of the differential form

ω = Res
(dxdy

f

)
=
dx

2y

on the standard elliptic curve Et defined by

f(x, y) = y2 − x(1− x)(x− t) = 0

which for t = 0 aquires a node. The equation can be written in the form

t = x− y2

x(1− x)
=
x2(1− x)− y2

x(1− x)
= u · v

where

u =
x
√

1− x− y√
x(1− x)

, v =
x
√

1− x+ y√
x(1− x)

.

Expressed in the coordinates u, v, the form ω transforms to√
1−

(u+ v

2

)2du

u

so we can represent the normalised period as the diagonal of an algebraic function of
two variables:

∆2

 1√
1− (u+v

2
)2

 = F (1/2, 1/2, 1; t)

and hence as a diagonal of a rational function of four variables. In fact, in this case, it
has even a representation as a diagonal of rational function

4

4− (x+ y)(1 + z)
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of three variables.

In [10] (Theorem 2, p.185) this idea is generalised to higher dimensions.
Consider a projective family of d-dimensional varieties

f : Y −→ P1, Yt = f−1(t)

defined over Q. We assume that 0 is a MUM-point and that GrW0 H
d
lim(Y0) is one-

dimensional. This implies that for t ∈ P1 \ Σ the Hodge space Hd,0(Yt) = H0(Ωd
Yt

) is
one dimensional. Pick a (rational) differential form Ω ∈ H0(Y , ωY(∗)) and a cycle

γt ∈ Hd(Yt,Z)

that is invariant under the monodromy. We can form the period function

φ(t) :=

∫
γt

ωt, ωt := Res
( Ω

f − t

)
that is defined in a sufficiently small disc around 0. We can write

φ(t) = Cy0(t)

where the normalised period expands as

y0(t) := 1 + a1t+ a2t
2 + a3t

3 + . . . ∈ Q[[t]].

Theorem: (Christol-André)
The series y(t) is the diagonal of an algebraic function of d+ 1-variables.

Proof: We may take a semi-stable model

Z π−→ Y f−→ ∆

of our family over a disc ∆. We let g := f ◦ π : Z −→ ∆ and set Zt = g−1(t). For

t 6= 0 we have Zt
π
≈ Yt. The singular fibre Y0 is replaced by a reduced normal crossing

divisor D =
⋃
Di ⊂ Z. We pull back ω to η on Z and can write the period function

as

φ(t) =

∫
δt

ResZt

( η

f − t

)
,

where the cycle δt maps to γt via π. From Steenbrinks construction of the limiting
mixed Hodge structure on Hd

lim(Y0) we obtain from the weight spectral sequence a
description GrW0 H

d
lim(Y0) in terms of the intersections of the divisors Di

GrW0 H
d
lim(Y0) = Hd(Γ),

where Γ is the dual intersection complex of the divisors Di. By assumption, this space
is one-dimensional so in particular, there must be points m ∈ Y where d + 1 divisors
intersect.
For each such point, we may compare the behaviour of f with the standard model.
Let R = OY,m the local ring of Y at one of these points m. The equations defining

the d + 1 divisors meeting at m may not belong to R, but in the Henselisation R̂ of
R we find elements x0, x1, . . . , xd such that Di is locally defined by xi = 0 and we can
arrange that the map f is given by

(x0, x1, . . . , xn) 7→ x0x1 . . . xd = t

By considering the points with |xi| = ti fixed, t0t1 . . . td = |t|, we obtain a real d-
dimensional torus Tm(t) ⊂ Yt that vanishes at the point m if t → 0. As the group
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W0H
d
lim(Yt) is supposed to be one-dimensional, all these tori Tm(t) are homologous to

a rational multiple of δt. Writing the form η in terms of the coordinates xi we have

η = h(x0, . . . , xd)dx0 ∧ dx1 ∧ . . . ∧ dxd

with h ∈ R̂. So

φ(t) =

∫
δt

Res
( η

g − t

)
= c

∫
Tm

Res
(hdx0dx1 . . . dxd
x0x1 . . . xd − t

)
= c∆d+1(h)

So the normalised period is indeed the diagonal of an algebraic function in d+ 1 vari-
ables. �

Combining this with the theorem of Denef and Lipschitz we get:

Corollary: The normalised monodromy invariant period near a MUM-point of a
Calabi–Yau d-fold is an 2(d+ 1)-diagonal, hence is N-integral.

In particular, for Calabi–Yau threefolds, the period y0 is an 8-diagonal!

In the context of Calabi–Yau operators, one asks also for the integrality of the mirror
map q(t). In some cases integrality of the mirror map has been shown by Lian and
Yau [112], Krattenthaler [106] and Delaygue [42] using purely number theoretic
methods. But for the majority of cases, the integrality of the mirror map remains
unproven.

The integrality of the nd is much deeper. In an A-incarnation, although supposed to
count rational degree d curves, nd is defined in terms of Gromov–Witten invariants, so
are a priori only in Q. So the integrality of the nd, which was the biggest selling point
of [27], is in the end the most mysterious aspect of the calculation. The conjectural
duality between Gromov–Witten theory and Donaldson–Thomas theory [119] would
provide a natural explanation. The recent paper [93] provides a proof of the integrality
of the nd in case the operator has an A-incarnation. It uses purely symplectic methods.

In the case of a B-incarnation one can use the link between the action of Frobenius and
the Yukawa coupling discovered by Kontsevich, Schwarz and Vologdsky [102],
[147]. A claim was made in [152] that in the geometrical case the instanton numbers are
N -integral, where the N relates to primes of bad reduction in the semi-stable reduction.

In the thesis of Bogner [21] one finds the following interesting operator:

P := Θ4 − 8t(2Θ + 1)2(5Θ2 + 5Θ + 2) + 192t2(2Θ + 1)(3Θ + 2)(3Θ + 4)(2Θ + 3).

The operator has an integral solution

y0(t) = 1 + 16t+ 576t2 + 25600t3 + 1220800t4 + . . . ,

integral mirror map

q = t+ 40t2 + 1984t3 + 106496t4 + . . . ,

integral Yukawa coupling

K(q) = 1 + 8q − 5632q3 − 456064q4 − 17708032q5 + . . .
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but the corresponding nd’s are not integral: np has denominator p2 for

p = 3, 5, 7, 11, 13, 17, 19, . . .

This is rather puzzling. The integrality of solution and mirror map clearly indicate that
we have a rank four Calabi–Yau motive and one would expect the general arguments
for the integrality of [152] to be applicable, but apparently they are not. Maybe there
is a different scaling of the coordinate that repairs this defect, but up to now we have
been unable to find it.

Questions:

(i) Is there a proof of the integrality of the mirror map along the same lines as the
proof of integrality of the normalised period y0? The higher dimensional strata in the
divisor D clearly will be relevant.

(ii) Constant terms series of Laurent polynomials are special cases of diagonals. The
cases specially relevant to Calabi–Yau periods are the reflexive ones, and more gen-
erally those with a single interior point. Is there a similar theory of reflexive diagonals?

(iii) For the constant term of the powers of a Laurent polynomial whose Newton poly-
hedron contains a single interior point there are so-called Dwork congruences, see [137]
and [121]. Is there an analogue for diagonals?

2.7. Monodromy conjecture. The monodromy group Γ ⊂ Sp4(Z) appearing in one-
parameter families of Calabi–Yau threefolds is largely mysterious. The paper [27] sug-
gested that this group has infinite index in Sp4(Z), but the arguments given were
insufficient. Only recently [26] this was proven to be the case for seven of the 14 hy-
pergeometric cases. Somewhat surprisingly, in the other seven cases the monodromy
group turned out to have finite index, [144, 145]. The situation for other one-parameter
families is under active study, [83]. Bogner and Reiter determined all symplectically
rigid local systems of rank four [23]; strong B-realisations have been described recently
in detail in [48].

In the paper [27] the explicit analytic continuation of solutions for the operator were
derived from the classical Barnes integral representation, which is tied to the hyperge-
ometric nature of the operator. One of the striking features is the appearance of the
number ζ(3) in combination with the Euler number of the quintic. For this, the four
loop correction to the sigma-model was made responsible. In that calculation, ζ(3)
enters via the third derivative of the Γ-function at 1.
The paper [86] contained a general study of complete intersections in products of projec-
tive spaces. The relevant holomorphic period function has nice expansions, whose coef-
ficients are expressible as a quotient of products of factorials, like the a(n) = (5n)!/(n!)5

appearing in the case of the mirror quintic. The solutions with log-terms can be ob-
tained from the Frobenius method, i.e. as the derivatives of

∑
a(n+ ρ)xn+ρ at ρ = 0.

If we replace all factorials by Γ using the relation x! = Γ(1 + x), we are naturally led
to consider the powerseries expansion

Γ(1 + 5x)

Γ(1 + x)5
= 1 +

5

3
π2x2 − 40ζ(3)x3 + . . .
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If we set
h :=

x

2πi
this can be written in the form

Γ(1 + 5x)

Γ(1 + x)5
=

1

5
(5− 50

24
h2 − 200

ζ(3)

(2πi)3
h3 + . . .).

Lo and behold, the coefficients of the expansion in h contain the characteristic numbers
of the quintic X:∫

X

H ·H ·H = 5,

∫
X

c1(X) ·H = 0,

∫
X

c2(X) ·H = 50,

∫
X

c3(X) = −200 !

In the paper [86] these remarkable identities were observed to hold for all complete
intersections in products of projective spaces and a version of it was generalised to
the toric setting in [87]. Inspired by these facts and the formal similarity between the
Chern polynomial of the quintic

(1 + h)5

(1 + 5h)

and the above series
Γ(1 + 5x)

Γ(1 + x)5

Libgober tried to find a general formulation of this relationship and introduced the
Hirzebruch genus associated to the power series 1

Γ(1+x)
.

In [54] we started computing monodromies numerically and discovered the systematic
apearance of ζ(3) for general (fourth order) Calabi–Yau operators. This led to the
following general conjecture:
.

Conjecture 1

The monodromy matrices for a Sp(4)-Calabi–Yau operator with respect to the scaled
Frobenius basis u0, u1, u2, u3 have entries in

Q[λ]

where

λ :=
ζ(3)

(2πi)3
.

Recall that the monodromy around 0 on the solution space

H0 = 〈u0, u1, u2, u3〉
is always represented by the matrix

T0 :=


1 0 0 0
1 1 0 0

1/2 1 1 0
1/6 1/2 1 1

 .

Furthermore, one can show that the skew-symmetric form

〈−,−〉 : H0 ×H0 −→ C
determined by the conditions

〈u0, u3〉 = −〈u1, u2〉 = 〈u2, u1〉 = −〈u3, u0〉
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is monodromy invariant.
A Calabi–Yau operator is called a conifold operator if the exponents around the singular
point c nearest to 0 are 0, 1, 1, 2 and the monodromy around c is a symplectic reflection.
So the monodromy Tc around c can be described in terms of a vector S ∈ H0 via the
formula

Tc : H0 −→ H0; v 7→ v − 〈v, S〉S.
We call S the reflection vector.
For example, the operator of Candelas is a conifold operator with c = 1/55 and the
vector S in the u-base is

(5, 0,
25

12
,−200λ)T

where we scale the skew-form by putting

〈u0, u3〉 =
1

5
.

Now note that for the quintic Calabi–Yau X ⊂ P4 and H ∈ H2(X) the hyperplane
class we have as mentioned before:

5 =
∫
X
H ·H ·H,

0 =
∫
X
c1(X) ·H ·H,

50 =
∫
X
c2(X) ·H,

−200 =
∫
X
c3(X).

One can verify for all cases where the operator arises from an A-incarnation of a Calabi–
Yau threefold X with h11 = 1, the operator indeed is a conifold operator, and that the
corresponding reflection vector is of the form

(d, 0,
c

24
, eλ)T , 〈u0, u3〉 =

1

d

and thus determines the characteristic numbers of X.

d =
∫
X
H ·H ·H,

0 =
∫
X
c1(X) ·H ·H,

c =
∫
X
c2(X) ·H,

e =
∫
X
c3(X).

And even more, the reflection vectors of all further conifold operators of the AESZ-list
appear to be of this form, where d, c, e are integers. From this one may conjecture the
existence of Calabi–Yau threefolds with the given characteristic numbers. This was the
main idea of the paper [54]. In the meantime, a few of these conjectured Calabi–Yau
varieties X have indeed been found, but there is still a big gap.

There is a beautiful interpretation of the monodromy conjecture in terms of homo-
logical mirror symmetry supplemented by the Γ-class introduced by Libgober [114]
discussed above and developed further by Kontsevich, Katzarkov, Pantev [101]
and Iritani [94]. We will sketch now that intriguing line of reasoning that, needless
to say, is largely conjectural in general.
According to Kontsevich [100], mirror symmetry should be understood as an equiv-
alence of categories

D(X)
Mir−→ F (Y )

and for the Calabi–Yau hypersurfaces Y ⊂ Pn a version of this has recently been proven
by Sheridan [142].
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The category on the left is Db(Coh(X)), the bounded derived category of coherent
sheaves on X, on the right we have Dπ(Fuk(Y )), the derived Fukaya category of Y .
The objects in this category are represented by Lagrangian cycles (with local systems
on them) in Y and the category only depends on the symplectic manifold underlying
Yt. The Hom-spaces in this category are given by Floer homology HF (L,L′) groups;
its Euler characteristic is just the intersection product of the corresponding cycles:

〈L,L′〉 := [L] · [L′]

On the left hand side, the Euler characteristic of the Hom-spaces between E and F in
D(X) is the Euler pairing

〈E ,F〉 :=
∑
i

(−1)i dimExti(E ,F).

Under mirror symmetry these should correspond:

〈E ,F〉 = 〈Mir(E),Mir(F)〉.

In the SYZ-picture of mirror symmetry, the spaces X and Y are related by T -duality:
both X and Y are supposed to have the structure of dual three-torus fibrations over a
common base. In [148] it is argued that under Mir the structure sheaf Op of a point
is mapped to a lagrangian torus T (with local system on it) in Y , and the structure
sheaf OX is mapped to a lagrangian sphere S:

Mir(OX) = S, Mir(Op) = T

and indeed

〈OX ,Op〉 = 1 = 〈S,T〉.
But there is a certain asymmetry: if we map objects of D(X) to Hev :=

⊕
kH

2k(X)
via the Chern character, we can express the Euler pairing as∫

X

ch(E∗)ch(F)Td(X).

Objects of F (Y ) represented by lagrangian cycles map directly to Hodd = H3(Y ) and
the pairing 〈L,L′〉 is just given as an intersection number; no tangential information
like Td(X) comes in. To overcome this asymmetry, one modifies the Chern character
by slipping in a sort of square root of the Todd class. Recall that the Todd class is the
characteristic class coming from the power series

x

1− e−x
.

The identiy Γ(x)Γ(1− x) = π/ sin(πx) for the Γ-function is equivalent to

Γ(1 +
x

2πi
)Γ(1− x

2πi
) = ex/2

x

1− e−x
.

Now introduce the Γ-class as the characteristic class belonging to power series expansion
of

Γ(1 +
x

2πi
) = exp(− γ

2πi
x+

∞∑
k=2

ζ(k)

(2πi)k
xk

k
)

So one puts:

Γ(TX) :=
∏
i

Γ(1 +
ξi

2πi
)



CALABI–YAU OPERATORS 33

where the ξi are the chern roots of TX . Then one can write

〈E ,F〉 = (ψ(E)∗ · ψ(F)),

where

ψ(E) := Γ(TX) ∪ ch(F)

and the operation ∗ multiplies a component in H2k by (−1)k. So we are supposed to
get a commutative diagram

D(X)
Mir−→ F (Y )

ψ ↓ ↓ φ
Hev(X)

mir−→ Hodd(Y )

where mir is the cohomological mirror map. (The same diagram is discussed in this
context at various places in the literature, see e.g. [85]).
The geometric monodromy of the family Yt, t ∈ P1 \ Σ, can be realised symplec-
tically and acts as auto-equivalences on F (Y ). Via mirror symmetry there should
be a corresponding action on D(X). And indeed, Kontevich conjectured that the
monodromy around the MUM-point corresponds to the auto-equivalence O(H)⊗ :
D(X) −→ D(X), whereas the Seidel–Thomas twist in the spherical object OX corre-
sponds to the symplectic Dehn twist along the sphere S.
But that implies that the reflection vector for the monodromy around the conifold
point should be equal to

S = mir(ψ(OX)) = φ(S) ∈ Hodd(Y ).

We will identify the space Hodd with the solution space H0, spanned by the scaled
Frobenius basis. Now we can work out everything!

In the basis 1, H,H2, H3 for Hev(X) the operation of O(H)⊗ is mapped via the Chern
character to multiplication with eh, so is represented by exactly the same matrix as T0

in the u-basis. Therefore, it is natural to put

mir(hk) = αuk,

where α is to be determined. The element ψ(OX) = Γ(TX) is computed to be

ψ(OX) = 1− λ2c2(X)− λ3c3(X),

where

λk :=
ζ(k)

(2πi)k
.

Writing this in terms of the basis 1, h, h2, h3 and applying mir we find for the reflection
vector

S := mir(ψ(OX)) =
α

d
(du0 +

c

24
u2 − λ3eu3),

where

d =

∫
X

H ·H ·H, c =

∫
X

c2(X) ·H, e =

∫
X

c3(X).

So we take α = d. Furthermore, mir(ψ(Op)) represents the cohomology class of the
torus in Hodd = H0. We find φ(Op) = 1

d
H3, so that

T := mir(φ(Op)) =
α

d
u3 = u3(= y0).
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As we are supposed to have 〈S, T 〉 = 1, we see that the right scaling of the skew form
indeed is obtained by putting

〈u0, u3〉 = −〈u1, u2〉 =
1

d
= 〈u2, u1〉 = −〈u3, u0〉.

So, miraculously, everything fits 2 and completely explains the structure of the conifold
reflection vector in the Frobenius basis. Usually a Calabi–Yau operator has more coni-
fold points and the corresponding reflection vectors should arise from other spherical
objects in D(X). As before, we obtain vectors of the same shape

1

d
(d, a,

c

24
, eλ3)T

but now usually a 6= 0. For more complicated monodromy transformations we do not
have a real argument, but there is little reason to doubt the general principle.

If the monodromy is not in Sp(4), there usually appear algebraic numbers and the
monodromy matrices appear to be contained in

Q[λ].

As an example, take the operator number 245 from the AESZ-list [3] mentioned earlier:

Θ4 − t(216θ4 + 396Θ3 + 366Θ2 + 168Θ + 30) + 36 (3 Θ + 2)2 (6 Θ + 7)2

with Riemann symbol 
0 1/108 ∞
0 0 2/3
0 1/6 2/3
0 1 7/6
0 7/6 7/6

 .

For the matrix of the monodromy around 1/108 in the Frobenius basis we find

√
3 + i

2


1/2
√

3− 72
√

3λ −
√

3 0 18
√

3

−1/6
√

3 1/2
√

3 −3
√

3 0

4
√

3λ 1/12
√

3 1/2
√

3 −
√

3

− 1
72

(1 + 20736λ2)
√

3 −4
√

3λ −1/6
√

3 1/2
√

3 + 72
√

3λ

 ,

which indeed has order six.
One can generalise this to higher order operators:

Conjecture 2
The monodromy matrices for a Calabi–Yau operator of order n+ 1 with respect to the
scaled Frobenius basis have entries in

Q[λ2, λ3, . . . , λn],

where

λk :=
ζ(k)

(2πi)k
.

This conjecture has been verified numerically for almost all Calabi–Yau operators of
the list. For those cases that can be related to specialisations of hypergeometric func-
tions of more variables one can in principle prove these numerical results. For details

2This I realised after a talk by Kontsevich (Vienna, 2008), where he explained the Γ-class.
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we refer to the thesis of Hofmann, [82].

It turns out that it is natural to formulate conjectures about the Γ-class in the context
of Fano manifolds, as was done in the beautiful paper [61]. The so-called Γ-conjectures
formulated there can be motivated from mirror symmetry [62] and they imply the
above monodromy conjecture in those cases where the Calabi–Yau manifold has an A-
incarnation as a complete intersection in a Fano-manifold for which the Γ-conjectures
are proven. In the paper [68] the Γ-conjectures were verified for the case of Fano three-
folds of Picard rank equal to one.

In this overview paper we have touched upon various aspects of Calabi–Yau operators.
We had to leave out several important topics, most notably be p-adic story, which
involves the Dwork congruences [137, 121], the computations of the local L-factors
[136, 135] and the p-adic analogue of the Γ-conjectures that lead to the appearance
of the p-adic analogue of ζ(3). Also higher genus instanton numbers for Calabi–Yau
operators were completely left out of this account.
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